Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Redetermination of bis(methyltriphenylphosphonium) hexachloridorhenate(IV)

Małgorzata Hołyńska,* Maria Korabik and Tadeusz Lis<br>Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland<br>Correspondence e-mail: holynska@wcheto.chem.uni.wroc.pl

Received 19 October 2007; accepted 23 October 2007

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; $R$ factor $=0.053 ; w R$ factor $=0.056$; data-to-parameter ratio $=35.8$.

The title compound, $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{P}\right)_{2}\left[\mathrm{ReCl}_{6}\right]$, has been prepared by a new method and its structure redetermined [Hołynska, Korabik \& Lis (2006). Acta Cryst. E62, m3178-m3180]. The previously observed orientational disorder of the $\left[\mathrm{ReCl}_{6}\right]^{2-}$ anion ( $\operatorname{Re}$ site symmetry $\overline{1}$ ) is reinterpreted as being due to a minor cocrystallized $\mathrm{Re}^{\mathrm{V}}$-containing impurity. Revised magnetic, MS and spectroscopic data are also presented and discussed. The crystal structure involves $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

## Related literature

For the previous structure, see: Hołyńska et al. (2006). For background, see: König (1966); Lis \& Jeżowska-Trzebiatowska (1977); Lukas (1978); Takazawa et al. (1990).


## Experimental

## Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{P}\right)_{2}\left[\mathrm{ReCl}_{6}\right] \\
& M_{r}=953.52 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.155(4) \AA \AA \\
& b=16.429(5) \AA \\
& c=12.964(5) \AA \\
& \beta=101.61(3)^{\circ}
\end{aligned}
$$

## Data collection

Oxford Diffraction KM-4-CCD diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.597, T_{\text {max }}=0.894$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.056$
214 parameters
$S=1.00$
7666 reflections
$\Delta \rho_{\text {max }}=0.82 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.98 \mathrm{e}^{-3}$

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Re}-\mathrm{Cl} 1$ | $2.3549(10)$ | $\mathrm{Re}-\mathrm{Cl} 3$ | $2.3644(12)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Re}-\mathrm{Cl} 2$ | $2.3604(11)$ |  |  |

Table 2
Hydrogen-bond geometry ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cl}^{2}{ }^{\mathrm{i}}$ | 0.95 | 2.74 | $3.527(4)$ | 141 |
| $\mathrm{C} 62-\mathrm{H} 62 \cdots \mathrm{Cl}^{\text {ii }}$ | 0.95 | 2.81 | $3.523(4)$ | 133 |
| $\mathrm{C} 1-\mathrm{H} 131 \cdots \mathrm{Cl}^{\text {iii }}$ | 0.98 | 2.71 | $3.570(4)$ | 147 |
| $\mathrm{C} 63-\mathrm{H} 63 \cdots \mathrm{Cl}^{i i}$ | 0.95 | 2.83 | $3.426(4)$ | 122 |
| $\mathrm{C} 1-\mathrm{H} 121 \cdots \mathrm{Cl}^{3}$ | 0.98 | 2.85 | $3.473(4)$ | 122 |
| $\mathrm{C} 42-\mathrm{H} 42 \cdots \mathrm{Cl}^{\text {iv }}$ | 0.95 | 2.83 | $3.712(4)$ | 155 |
| $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Cl}^{\mathrm{v}}$ | 0.95 | 2.73 | $3.567(4)$ | 147 |

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $x-1, y, z$; (iv)
$x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2} ;(\mathrm{v})-x,-y+1,-z+1$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2601).

## References

Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Hołyńska, M., Korabik, M. \& Lis, T. (2006). Acta Cryst. E62, m3178m3180.
König, E. (1966). Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, edited by K. H. Hellwege \& A. M. Hellwege, pp. 27-29. Berlin: Springer.
Lis, T. \& Jeżowska-Trzebiatowska, B. (1977). Acta Cryst. B33, 1248-1250.
Lukas, W. (1978). Pol. J. Chem. 32, 2243-2245.
Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Versions 1.171.31.5. Oxford Diffraction, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Takazawa, H., Ohba, S., Saito, Y. \& Sano, M. (1990). Acta Cryst. B46, 166174.

## supplementary materials

## Redetermination of bis(methyltriphenylphosphonium) hexachloridorhenate(IV)

## M. Holynska, M. Korabik and T. Lis

## Comment

During our recent unpublished studies on the reaction of gaseous hydrogen chloride with rhenates(VII) (continuation of the work of Lis \& Jeżowska-Trzebiatowska, 1977) formation of crystalline products with rhenium at different oxidation states was observed. It was confirmed with a number of physicochemical methods that these products usually contained minor quantity of cocrystallizing impurities, sometimes hardly detectable. This induced us to reinspect all our previous results for compounds obtained by this method.

In our previous paper on the title compound, (I), bis(methyltriphenylphosphonium) hexachlororhenate(IV) we reported the crystal structure of the product obtained from the suspension of methyltriphenylphosphonium rhenate(VII) in acetone exposed to gaseous HCl (Hołyńska et al., 2006). It was assumed that the crystal structure consists of methyltriphenylphoshonium cations and slightly disordered hexachlororhenate(IV) anions. The reinspection showed that one of the three independent $\mathrm{Re}-\mathrm{Cl}$ bond lengths was slightly shorter than expected based on the literature data [2.323 (3) $\AA$ in comparison to 2.3545 (9) reported for potassium hexachlororhenate(IV) by Takazawa et al., 1990]. This work investigates whether this was a result either of minor impurity content or artifact connected with disorder. The other aim is to obtain a pure compound with reliable geometric parameters for the hexachlororhenate(IV) anion.

Therefore recently we used a different method to prepare (I), namely simple precipitation in reaction between methyltriphenylphoshonium chloride and potassium hexachlororhenate(IV). It was assumed that if the different method yields results not arguable from crystallographic point of view, the previous results were affected by impurity content rather than disorder artifacts. The X-ray studies performed on the crystal obtained in recrystallization from ethanol yield different results than in the previous work (Hołyńska et al., 2006). Therefore, the previously reported slightly distorted geometry of the hexachlororhenate(IV) anion, its apparent "disorder" as well as high peaks on the difference Fourier map, could be a result of a co-crystallized impurity, most probably by a $\mathrm{Re}^{\mathrm{V}}$ complex. For one thing, it was observed that methyltriphenylphosphonium trans-aquatetrachlorooxorhenate $(\mathrm{V})$ monohydrate could be obtained in crystalline form as a second reaction product in the previously investigated system (Hołyńska et al., unpublished). In this salt each anion consists of the central $\operatorname{Re}^{\mathrm{V}}$ atom bonded to the oxo ligand and aqua ligand in trans position to the oxo ligand and four chlorine ligands lying in the distorted coordination octahedron equatorial plane. The trans-aquatetrachlorooxorhenate(V) anion could in small amount cocrystallize with the hexachlororhenate(IV) product. However, the attempt to take such impurity into account during the crystal structure re-refinement was unsuccessful. The reason for this situation could be the very small amounts of the impurity or that the $\mathrm{Re}^{\mathrm{V}}$ anion is disordered in many positions in the crystal structure. The position of peaks on the difference Fourier map (Hołyńska et al., 2006) as well as the mode of the hexachlororhenate(IV) anion distortion suggest that the Re atom of the $\mathrm{Re}^{\mathrm{V}}$ complex anion is in the same position as the hexachlororhenate(IV) anion Re atom. Moreover, none of the possible anion orientations allows the water molecule coordinated to the $\mathrm{Re}^{\mathrm{V}}$ atom to be involved in any strong hydrogen bonds. This is poorly confirmed by the IR spectra obtained in nujol mull in the $3100-3400 \mathrm{~cm}^{-1}$ region (hardly detectable bands at 3580 and $3600 \mathrm{~cm}^{-1}$ ). On the other hand, a weak band at approximately $937 \mathrm{~cm}^{-1}$ could be observed which could be

## supplementary materials

assigned to the $\mathrm{Re}-\mathrm{O}$ stretching mode. The mass spectra obtained for the pure and impure title compound differ to a small extent, especially with respect to the $200-350 \mathrm{~m} / Z$ range where for the latter high noise level is present and some minor peaks could be interpreted as a result of an oxocomplex anion defragmentation [assuming after Lukas (1978) that $\mathrm{ReOCl}_{3}{ }^{+}$ and $\mathrm{ReOCl}_{2}{ }^{+}$ions could be formed]. The previously reported (Hołyńska et al., 2006) magnetic susceptibility data for the impure compound assuming the additivity of gram magnetic susceptibilities (König, 1966) at room temperature allow us to estimate the $\mathrm{Re}^{\mathrm{V}}$ impurity amount at about $7-8 \%$.

The structure described here for (I) seems to be more reliable than the structure reported previously (Hołyńska et al., 2006). The title crystal structure consists of hexachlororhenate(IV) anions and methyltriphenylphosphophonium cations (Fig. 1). Each hexachlororhenate(IV) anion is generated by inversion and is of octahedral geometry (Table 1). The geometry of the methyltriphenylphosphonium cation does not differ from our previous results (Hołyńska et al., 2006). The overall crystal structure (Fig. 2) is also as previously reported (Hołyńska et al., 2006). The weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding scheme (Table 2) is essentially conserved in comparison to the previously reported structure (Hołyńska et al., 2006) taking into consideration the higher-occupancy component of the hexachlororhenate(IV) anion.

The magnetic susceptibility data collected for the newly obtained compound (Fig. 3) reveal in comparison to the previously published data (Hołyńska et al., 2006) a similar effective magnetic moment temperature dependence with lower values at $300 \mathrm{~K}\left(3.54 \mu_{\mathrm{B}}\right)$ in comparison to the here reported $3.71 \mu_{\mathrm{B}}$. This is understandable assuming the diamagnetic properties of the $\mathrm{Re}^{\mathrm{V}}$ impurity. The impurity causes lowering of the $\chi_{\mathrm{m}} \mathrm{T}$ values in the temperature range $50-300 \mathrm{~K}$ (Fig. 3). In the $50-$ 300 K temperature range the $\chi_{\mathrm{m}} \mathrm{T}$ values for the "impure" compound are nearly constant which is another effect introduced by the diamagnetic impurity. The new value of the parameter $D$ is $17(2) \mathrm{cm}^{-1}$ which is higher than $14(2) \mathrm{cm}^{-1}$ obtained previously (Hołyńska et al., 2006). The remaining fitted parameters are $g$ (perpendicular) and $g$ (parallel). For the 'pure' compound their values are 1.68 and 2.28 , respectively (the minimalized $R=4.0 \times 10^{-4}$ ). For the 'impure' compound their values are 1.71 and 2.04, respectively (the minimalized value $R=2.73 \times 10^{-5}$ ).

## Experimental

0.5 g of potassium hexachlororhenate(IV) was dissolved in hot concentrated hydrochloric acid. Stoichiometric quantity of methyltriphenylphosphonium chloride dissolved in concentrated hydrochloric acid was added. As a result, a fine greenish precipitate was formed. The product was recrystallized from hot ethanol to yield green needles of (I). The crystal taken for X-ray measurement was cut from a larger needle. ESI-MS spectrum was collected in acetonitrile for the 'pure' compound as well as for the 'impure' compound obtained with the aid of the method described previously (Hołyńska et al., 2006). The device used was micrOTOF-Q (data for the 'pure' compound (m/Z for negative ions): $363.8\left(\mathrm{ReCl}_{5}{ }^{-}\right) ; 326.8\left(\mathrm{ReCl}_{4}{ }^{-}\right) ;(\mathrm{m} / Z$ for positive ions): $277.1\left(\mathrm{PPh}_{3} \mathrm{CH}_{3}{ }^{+}\right) ; 1230.1$ (evidently for the cluster ions formed during the ionization process). IR spectra were collected for suspensions in nujol mull on BRUKER spectrometer. The magnetic measurements were performed for 0.02831 g powdered sample of the title complex, at the magnetic field 0.5 T , using Quantum Design SQUID Magnetometer (type MPMS-XL5), at 1.8 to 300 K temperature range. The corrections introduced for diamagnetism of the constituent atoms were introduced based on the Pascal constants (König, 1966).

## Refinement

The non-hydrogen atom coordinates from the previously study (Hołyńska et al., 2006) were used as the starting model for the present refinement. The H atoms were generated geometrically $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}$ (methyl C). The highest difference peak is $0.6-0.9 \AA$ from Re.

## Figures



Fig. 1. View of the molecular structure of (I) with atom labelling scheme adopted from our previous work (Hołyńska et al., 2006). The non-labelled non-hydrogen atoms are related by the symmetry operation: (i) $1-x, 1-y, 1-z$.

Fig. 2. The packing for (I) viewed along [001] showing cation layers perpendicular to [010]. H atoms were omitted for clarity.


Fig. 3. The $\chi_{\mathrm{m}} \mathrm{T}$ temperature dependence ( $\chi_{\mathrm{m}}$ - the molar magnetic susceptibility) for the "impure" (blue open triangles) and "pure" (black open circles) compounds. The calculated curves are denoted with solid lines (see text). The red squares illustrate the simulated $\chi_{\mathrm{m}} \mathrm{T}$ temperature dependence of the "pure" compound with 7\% diamagnetic impurity.

## bis(methyltriphenylphosphonium) hexachloridorhenate(IV)

Crystal data
$\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{P}\right)_{2}\left[\mathrm{ReCl}_{6}\right]$
$M_{r}=953.52$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=9.155$ (4) $\AA$
$b=16.429$ (5) $\AA$
$c=12.964(5) \AA$
$\beta=101.61(3)^{\circ}$
$V=1910(1) \AA^{3}$
$Z=2$
$F_{000}=942$
$D_{\mathrm{x}}=1.658 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 12158 reflections
$\theta=3-35^{\circ}$
$\mu=3.71 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Needle, green
$0.23 \times 0.04 \times 0.03 \mathrm{~mm}$

## Data collection

Oxford Diffraction KM-4-CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100(2) \mathrm{K}$
$\omega$ scans
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.597, T_{\text {max }}=0.894$
27585 measured reflections

> 7666 independent reflections
> 5027 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.083$
> $\theta_{\max }=35.0^{\circ}$
> $\theta_{\min }=3.0^{\circ}$
> $h=-14 \rightarrow 13$
> $k=-26 \rightarrow 25$
> $l=-20 \rightarrow 15$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.056$
$S=1.00$
7666 reflections
214 parameters

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $\mathrm{F}^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit S are based on $\mathrm{F}^{2}$, conventional $R$-factors $R$ are based on F , with F set to zero for negative $\mathrm{F}^{2}$. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $\mathrm{F}^{2}$ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Re | 0.5000 | 0.5000 | 0.5000 | $0.01104(4)$ |
| Cl 2 | $0.56433(10)$ | $0.48672(5)$ | $0.33339(6)$ | $0.0217(2)$ |
| $\mathrm{Cl1}$ | $0.60865(9)$ | $0.63048(5)$ | $0.51815(6)$ | $0.01666(17)$ |
| Cl 3 | $0.27081(9)$ | $0.55985(5)$ | $0.41870(7)$ | $0.02034(19)$ |
| P | $-0.00563(10)$ | $0.71920(5)$ | $0.63598(7)$ | $0.01511(18)$ |
| C 1 | $0.0052(4)$ | $0.6349(2)$ | $0.5511(3)$ | $0.0254(8)$ |
| H 111 | 0.0669 | 0.5921 | 0.5906 | $0.038^{*}$ |

## sup-4

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| H121 | 0.0498 | 0.6527 | 0.4922 | $0.038^{*}$ |
| H131 | -0.0952 | 0.6137 | 0.5240 | $0.038^{*}$ |
| C11 | $-0.1190(4)$ | $0.79804(19)$ | $0.5638(2)$ | $0.0156(7)$ |
| C21 | $-0.2431(4)$ | $0.8290(2)$ | $0.5957(3)$ | $0.0207(8)$ |
| H21 | -0.2717 | 0.8081 | 0.6570 | $0.025^{*}$ |
| C31 | $-0.3261(4)$ | $0.8906(2)$ | $0.5381(3)$ | $0.0277(9)$ |
| H31 | -0.4128 | 0.9109 | 0.5592 | $0.033^{*}$ |
| C41 | $-0.2831(4)$ | $0.9222(2)$ | $0.4509(3)$ | $0.0292(9)$ |
| H41 | -0.3381 | 0.9655 | 0.4130 | $0.035^{*}$ |
| C51 | $-0.1599(5)$ | $0.8910(2)$ | $0.4182(3)$ | $0.0328(10)$ |
| H51 | -0.1319 | 0.9122 | 0.3568 | $0.039^{*}$ |
| C61 | $-0.0775(4)$ | $0.8296(2)$ | $0.4739(3)$ | $0.0297(9)$ |
| H61 | 0.0075 | 0.8086 | 0.4513 | $0.036^{*}$ |
| C12 | $0.1785(4)$ | $0.7612(2)$ | $0.6796(2)$ | $0.0158(7)$ |
| C22 | $0.3037(4)$ | $0.7143(2)$ | $0.6761(2)$ | $0.0183(7)$ |
| H22 | 0.2928 | 0.6607 | 0.6481 | $0.022^{*}$ |
| C32 | $0.4455(4)$ | $0.7463(2)$ | $0.7138(3)$ | $0.0210(8)$ |
| H32 | 0.5315 | 0.7145 | 0.7114 | $0.025^{*}$ |
| C42 | $0.4610(4)$ | $0.8241(2)$ | $0.7546(3)$ | $0.0227(8)$ |
| H42 | 0.5578 | 0.8455 | 0.7807 | $0.027^{*}$ |
| C52 | $0.3353(4)$ | $0.8715(2)$ | $0.7577(3)$ | $0.0236(8)$ |
| H52 | 0.3463 | 0.9253 | 0.7853 | $0.028^{*}$ |
| C62 | $0.1945(4)$ | $0.8397(2)$ | $0.7203(3)$ | $0.0211(8)$ |
| H62 | 0.1087 | 0.8716 | 0.7224 | $0.025^{*}$ |
| C13 | $-0.0826(4)$ | $0.68715(19)$ | $0.7461(2)$ | $0.0154(7)$ |
| C23 | $-0.1450(4)$ | $0.6100(2)$ | $0.7468(3)$ | $0.0190(8)$ |
| H23 | -0.1456 | 0.5740 | 0.6894 | $0.023^{*}$ |
| C33 | $-0.2064(4)$ | $0.5858(2)$ | $0.8313(3)$ | $0.0254(9)$ |
| H33 | -0.2497 | 0.5333 | 0.8317 | $0.031^{*}$ |
| C43 | $-0.2043(4)$ | $0.6387(3)$ | $0.9156(3)$ | $0.0259(9)$ |
| H43 | -0.2451 | 0.6219 | 0.9740 | $0.031^{*}$ |
| C53 | $-0.1429(4)$ | $0.7155(2)$ | $0.9143(3)$ | $0.0266(9)$ |
| H53 | -0.1429 | 0.7515 | 0.9717 | $0.032^{*}$ |
| C63 | $-0.0815(4)$ | $0.7405(2)$ | $0.8306(3)$ | $0.0214(8)$ |
| H63 | 0.0391 | 0.8302 | $0.026^{*}$ |  |
|  |  |  |  |  |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Re | $0.01165(8)$ | $0.00856(7)$ | $0.01278(8)$ | $0.00030(12)$ | $0.00211(6)$ | $-0.00037(12)$ |
| Cl 2 | $0.0359(5)$ | $0.0136(5)$ | $0.0191(4)$ | $0.0011(3)$ | $0.0137(3)$ | $0.0003(3)$ |
| Cl 1 | $0.0174(4)$ | $0.0103(4)$ | $0.0209(4)$ | $-0.0019(3)$ | $0.0006(3)$ | $0.0001(3)$ |
| Cl 3 | $0.0143(4)$ | $0.0141(4)$ | $0.0295(5)$ | $0.0028(3)$ | $-0.0030(4)$ | $-0.0003(3)$ |
| P | $0.0136(5)$ | $0.0179(4)$ | $0.0137(4)$ | $0.0000(3)$ | $0.0023(4)$ | $-0.0046(3)$ |
| C 1 | $0.025(2)$ | $0.027(2)$ | $0.0229(18)$ | $-0.0021(16)$ | $0.0025(16)$ | $-0.0129(15)$ |
| C 11 | $0.0140(19)$ | $0.0165(17)$ | $0.0149(16)$ | $0.0003(13)$ | $-0.0005(14)$ | $-0.0020(13)$ |
| C 21 | $0.022(2)$ | $0.0181(19)$ | $0.0225(19)$ | $0.0001(15)$ | $0.0070(17)$ | $-0.0021(15)$ |
| C 31 | $0.019(2)$ | $0.021(2)$ | $0.042(3)$ | $0.0035(16)$ | $0.0030(19)$ | $-0.0053(17)$ |


| C41 | $0.030(2)$ | $0.023(2)$ | $0.029(2)$ | $0.0033(17)$ | $-0.0055(18)$ | $-0.0001(16)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C51 | $0.044(3)$ | $0.039(2)$ | $0.0142(18)$ | $-0.002(2)$ | $0.0048(18)$ | $0.0064(16)$ |
| C61 | $0.031(2)$ | $0.040(2)$ | $0.0193(19)$ | $0.0048(18)$ | $0.0084(17)$ | $0.0040(17)$ |
| C12 | $0.0136(18)$ | $0.0188(18)$ | $0.0144(16)$ | $-0.0010(13)$ | $0.0013(14)$ | $-0.0004(13)$ |
| C22 | $0.021(2)$ | $0.0188(18)$ | $0.0162(17)$ | $0.0003(14)$ | $0.0064(15)$ | $-0.0021(13)$ |
| C32 | $0.015(2)$ | $0.032(2)$ | $0.0172(17)$ | $0.0011(15)$ | $0.0057(15)$ | $0.0004(15)$ |
| C42 | $0.018(2)$ | $0.036(2)$ | $0.0140(17)$ | $-0.0076(16)$ | $0.0024(15)$ | $-0.0033(15)$ |
| C52 | $0.020(2)$ | $0.0233(19)$ | $0.028(2)$ | $-0.0051(15)$ | $0.0050(16)$ | $-0.0071(15)$ |
| C62 | $0.015(2)$ | $0.025(2)$ | $0.0244(19)$ | $0.0020(15)$ | $0.0064(16)$ | $-0.0031(15)$ |
| C13 | $0.0140(19)$ | $0.0171(17)$ | $0.0143(16)$ | $-0.0019(13)$ | $0.0007(14)$ | $-0.0015(13)$ |
| C23 | $0.0149(19)$ | $0.0227(19)$ | $0.0167(17)$ | $-0.0004(14)$ | $-0.0033(14)$ | $-0.0028(14)$ |
| C33 | $0.023(2)$ | $0.0218(19)$ | $0.028(2)$ | $-0.0073(15)$ | $-0.0053(16)$ | $0.0067(16)$ |
| C43 | $0.015(2)$ | $0.041(3)$ | $0.022(2)$ | $-0.0022(18)$ | $0.0038(17)$ | $0.0077(19)$ |
| C53 | $0.033(2)$ | $0.029(2)$ | $0.0191(19)$ | $-0.0078(17)$ | $0.0077(17)$ | $-0.0040(15)$ |
| C63 | $0.024(2)$ | $0.0184(18)$ | $0.0214(18)$ | $-0.0050(15)$ | $0.0045(16)$ | $-0.0028(14)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Re}-\mathrm{Cl1}$ | $2.3549(10)$ |
| :--- | :--- |
| $\mathrm{Re}-\mathrm{Cl} 2$ | $2.3604(11)$ |
| $\mathrm{Re}-\mathrm{Cl} 3$ | $2.3644(12)$ |
| $\mathrm{Re}-\mathrm{Cl1}{ }^{\mathrm{i}}$ | $2.3549(10)$ |
| $\mathrm{Re}-\mathrm{Cl} 2^{\mathrm{i}}$ | $2.3604(11)$ |
| $\mathrm{Re}-\mathrm{Cl} 3^{\mathrm{i}}$ | $2.3644(12)$ |
| $\mathrm{P}-\mathrm{C} 1$ | $1.783(3)$ |
| $\mathrm{P}-\mathrm{C} 13$ | $1.793(3)$ |
| $\mathrm{P}-\mathrm{C} 11$ | $1.800(3)$ |
| $\mathrm{P}-\mathrm{C} 12$ | $1.804(3)$ |
| $\mathrm{C} 1-\mathrm{H} 111$ | 0.98 |
| $\mathrm{C} 1-\mathrm{H} 121$ | 0.98 |
| $\mathrm{C} 1-\mathrm{H} 131$ | 0.98 |
| $\mathrm{C} 11-\mathrm{C} 21$ | $1.381(5)$ |
| $\mathrm{C} 11-\mathrm{C} 61$ | $1.396(5)$ |
| $\mathrm{C} 21-\mathrm{C} 31$ | $1.390(5)$ |
| $\mathrm{C} 21-\mathrm{H} 21$ | 0.95 |
| $\mathrm{C} 31-\mathrm{C} 41$ | $1.371(5)$ |
| $\mathrm{C} 31-\mathrm{H} 31$ | 0.95 |
| $\mathrm{C} 41-\mathrm{C} 51$ | $1.380(5)$ |
| $\mathrm{C} 41-\mathrm{H} 41$ | 0.95 |
| $\mathrm{C} 51-\mathrm{C} 61$ | $1.376(5)$ |
| $\mathrm{C} 51-\mathrm{H} 51$ | 0.95 |
| $\mathrm{C} 11-\mathrm{Re}-\mathrm{Cl} 2$ | $89.85(3)$ |
| $\mathrm{C} 11-\mathrm{Re}-\mathrm{Cl} 3$ | $89.14(4)$ |
| $\mathrm{C} 12-\mathrm{Re}-\mathrm{Cl} 3$ | $89.60(4)$ |
| $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 13$ | $110.0(1)$ |
| $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 11$ | $109.6(1)$ |
| $\mathrm{C} 13-\mathrm{P}-\mathrm{C} 11$ | $110.3(1)$ |
| $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 12$ | $109.0(1)$ |
|  |  |

## sup-6

supplementary materials

| C13-P-C12 | 110.7 (1) |
| :---: | :---: |
| C11-P-C12 | 107.0 (1) |
| $\mathrm{P}-\mathrm{C} 1-\mathrm{H} 111$ | 109.5 |
| $\mathrm{P}-\mathrm{C} 1-\mathrm{H} 121$ | 109.5 |
| H111-C1-H121 | 109.5 |
| $\mathrm{P}-\mathrm{C} 1-\mathrm{H} 131$ | 109.5 |
| H111-C1-H131 | 109.5 |
| H121-C1-H131 | 109.5 |
| C21-C11-C61 | 119.4 (3) |
| C21-C11-P | 122.2 (3) |
| C61-C11-P | 118.4 (3) |
| C11-C21-C31 | 120.1 (4) |
| C11-C21-H21 | 119.9 |
| C31-C21-H21 | 119.9 |
| C41-C31-C21 | 120.1 (4) |
| C41-C31-H31 | 120.0 |
| C21-C31-H31 | 120.0 |
| C31-C41-C51 | 120.1 (4) |
| C31-C41-H41 | 120.0 |
| C51-C41-H41 | 120.0 |
| C61-C51-C41 | 120.4 (4) |
| C61-C51-H51 | 119.8 |
| C41-C51-H51 | 119.8 |
| C51-C61-C11 | 119.9 (4) |
| C51-C61-H61 | 120.1 |
| C11-C61-H61 | 120.1 |
| C62-C12-C22 | 120.1 (3) |
| C62-C12-P | 119.7 (3) |
| $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 11-\mathrm{C} 21$ | 123.7 (3) |
| C13-P-C11-C21 | 2.4 (3) |
| C12-P-C11-C21 | -118.2 (3) |
| $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 11-\mathrm{C} 61$ | -57.6 (3) |
| C13-P-C11-C61 | -178.8 (3) |
| C12-P-C11-C61 | 60.6 (3) |
| C61-C11-C21-C31 | 0.4 (5) |
| $\mathrm{P}-\mathrm{C} 11-\mathrm{C} 21-\mathrm{C} 31$ | 179.1 (3) |
| C11-C21-C31-C41 | -1.5 (6) |
| C21-C31-C41-C51 | 2.1 (6) |
| C31-C41-C51-C61 | -1.5 (6) |
| C41-C51-C61-C11 | 0.4 (6) |
| C21-C11-C61-C51 | 0.1 (5) |
| $\mathrm{P}-\mathrm{C} 11-\mathrm{C} 61-\mathrm{C} 51$ | -178.6 (3) |
| C1-P-C12-C62 | 161.3 (3) |
| C13-P-C12-C62 | -77.5 (3) |
| C11-P-C12-C62 | 42.8 (3) |
| C1-P-C12-C22 | -20.9 (3) |
| C13-P-C12-C22 | 100.3 (3) |
| C11-P-C12-C22 | -139.4 (3) |
| C62-C12-C22-C32 | 0.2 (5) |


| C32-C42-C52 | 120.4 (3) |
| :---: | :---: |
| C32-C42-H42 | 119.8 |
| C52-C42-H42 | 119.8 |
| C62-C52-C42 | 119.5 (3) |
| C62-C52-H52 | 120.3 |
| C42-C52-H52 | 120.3 |
| C52-C62-C12 | 120.3 (3) |
| C52-C62-H62 | 119.9 |
| C12-C62-H62 | 119.9 |
| C23-C13-C63 | 120.2 (3) |
| C23-C13-P | 120.0 (3) |
| C63-C13-P | 119.8 (3) |
| C33-C23-C13 | 119.9 (3) |
| C33-C23-H23 | 120.0 |
| C13-C23-H23 | 120.0 |
| C23-C33-C43 | 119.8 (3) |
| C23-C33-H33 | 120.1 |
| C43-C33-H33 | 120.1 |
| C53-C43-C33 | 120.1 (4) |
| C53-C43-H43 | 120.0 |
| C33-C43-H43 | 120.0 |
| C63-C53-C43 | 120.7 (3) |
| C63-C53-H53 | 119.6 |
| C43-C53-H53 | 119.6 |
| C53-C63-C13 | 119.2 (3) |
| C53-C63-H63 | 120.4 |
| C13-C63-H63 | 120.4 |
| $\mathrm{P}-\mathrm{C} 12-\mathrm{C} 22-\mathrm{C} 32$ | -177.5 (2) |
| C12-C22-C32-C42 | 0.1 (5) |
| C22-C32-C42-C52 | -0.5 (5) |
| C32-C42-C52-C62 | 0.5 (5) |
| C42-C52-C62-C12 | -0.2 (5) |
| C22-C12-C62-C52 | -0.2 (5) |
| $\mathrm{P}-\mathrm{C} 12-\mathrm{C} 62-\mathrm{C} 52$ | 177.6 (3) |
| C1-P-C13-C23 | -10.1 (3) |
| C11-P-C13-C23 | 111.0 (3) |
| C12-P-C13-C23 | -130.7 (3) |
| C1-P-C13-C63 | 170.8 (3) |
| C11-P-C13-C63 | -68.1 (3) |
| C12-P-C13-C63 | 50.2 (3) |
| C63-C13-C23-C33 | 0.0 (5) |
| $\mathrm{P}-\mathrm{C} 13-\mathrm{C} 23-\mathrm{C} 33$ | -179.1 (3) |
| C13-C23-C33-C43 | -0.5 (5) |
| C23-C33-C43-C53 | 0.8 (6) |
| C33-C43-C53-C63 | -0.8 (6) |
| C43-C53-C63-C13 | 0.3 (6) |
| C23-C13-C63-C53 | 0.1 (5) |
| $\mathrm{P}-\mathrm{C} 13-\mathrm{C} 63-\mathrm{C} 53$ | 179.2 (3) |

## supplementary materials

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots \mathrm{A}$ | D-H | H $\cdots$ A | ${ }^{\cdots \cdots} A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cl} 2^{\text {i }}$ | 0.95 | 2.74 | 3.527 (4) | 141 |
| C62-H62 ${ }^{\text {C }}$ Cl2 ${ }^{\text {ii }}$ | 0.95 | 2.81 | 3.523 (4) | 133 |
| C1—H131 $\cdots \mathrm{Cl} 1^{\text {iii }}$ | 0.98 | 2.71 | 3.570 (4) | 147 |
| C63-H63 $\cdots \mathrm{Cl} 1^{\text {ii }}$ | 0.95 | 2.83 | 3.426 (4) | 122 |
| $\mathrm{C} 1-\mathrm{H} 121 \cdots \mathrm{Cl} 3$ | 0.98 | 2.85 | 3.473 (4) | 122 |
| $\mathrm{C} 42-\mathrm{H} 42 \cdots \mathrm{Cl} 3^{\text {iv }}$ | 0.95 | 2.83 | 3.712 (4) | 155 |
| $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Cl} 3^{\text {v }}$ | 0.95 | 2.73 | 3.567 (4) | 147 |

Fig. 1


Fig. 2


## supplementary materials

Fig. 3


